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Abstract The concept of ferrimagnetism was first proposed by Nee1 to explain why some 
materials have a macroscopic magnetization but no ferromagnetic long-range order. when the 
temperature T is lower than a phase transition temperamre T,. In this article, based on a 
theorem of Lieb and Mattis, we show in a mathematically rigorous way that the global ground 
states of the generalized antiferromagnetic Heisenberg model on a bipartite lattice with unequal 
sublanice points have both ferromagnetic and antiferromagnetic long-range orders wim the lane1 
being predominant. Our rigorous results conform to Neel's theorj. 

The magnetic properties of solids are of fundamental importance in the study of condensed 
matter physics. In addition to the well known ferromagnetism and antiferromagnetism, 
the existence of femmagnetism in some materials was proposed by Neel four decades 
ago [l]. A ferrimagnet represents an intermediate case between a ferromagnet of parallel 
spins and an antiferromagnet of equal antiparallel spins. According to Neel, a ferrimagnet 
is a magnetic material which exhibits a spontaneous magnetization below a phase transition 
temperature Tc. But, in contrast to ferromagnets, this magnetization arises-from the unequal 
magnetic moments which are not parallel. One can find a comprehensive review on 
ferrimagnetism in [21. 

To describe a ferrimagnet, one usually uses either the antiferromagnetic Heisenberg 
model or the positive-U Hubbard model: In the Heisenberg model, each magnetic spin is 
localized at a lattice point while, in the Hubbard model, electrons with a magnetic spin of 4 
are allowed to hop from one lattice point to another. The Hamiltonians of both models are 
defined on a bipartite lattice A, which has two sublattices, A and B ,  with unequal numbers 
of points. The main analytical techniques in studying these models were the mean-field 
theory and the spin-wave theory 121. These are very intuitive and effective approximate 
methods. However, it is not easy to estimate the error in the final results obtained by 
them. Therefore, in this article, we would like to study these antiferromagnetic models in 
a mathematically rigorous way. By showing explicitly the existence of ferrimagnetism in 
the ground states of these models, we are able to achieve a better understanding on the 
interconnection between femmagnetism and the lattice structures. 

To begin with, we shall first recall some established results, which will be used in the 
following. 

In a seminal paper [3], Lieh and Mattis showed that the ground state of a generalized 
antiferromagnetic Heisenberg model on a bipartite lattice is non-degenerate apart from the 
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trivial spin degeneracy. Furthermore, if'all the localized spins have the same angular 
momentum s, then the total spin of the ground state is L = SINA - N E [ ,  where N A  and N B  
are the numbers of the lattice points in sublattices A and B ,  respectively. Therefore, if the 
difference INA - N E  I is a macroscopic quantity, the system has a spontaneous magnetization 
in its ground state. Recently, this result was also established for the positive4 Hubbard 
model at half-filling by Lieb [4]. However, in both papers the existence of the magnetic 
long-range orders (MLRO) in the ground states of these models was not addressed. For 
the antiferromagnetic Heisenberg model on the simple cubic lattice, this question has been 
studied by several authors [5-71. They proved that, if the localized spin momentum s 2 
and the lattice dimension d 2 3, or s 2 1 and d = 2, then the non-degenerate ground state 
of the antiferromagnetic Heisenberg model does have an antiferromagnetic long-range order. 
However, since the difference INA - ~ N B [  = 0 for the simple cubic lattice, ferrimagnetism 
was not found in this case. 

In a recent article [SI, by using a theorem proved before [9], Shen et a1 showed that 
some of the 2L+ 1 ground states of the positive-U Hubbard model on a bipartite lattice have 
both transverse ferromagnetic and antiferromagnetic long-range orders when the lattice is 
half-filled. It implies that ferrimagnetism does exist in a strongly correlated electron system 
for some specific filling fraction. 

In this article, we shall first extend the result of [8] to the generalized antiferromagnetic 
Heisenberg model studied by Lieb and Mattis [3]. Namely, we show that some of the 2L+ 1 
degenerate ground states of the generalized antiferromagnetic Heisenberg model have both 
tranmerse ferromagnetic and antiferromagnetic long-range orders. Then, we shall show 
how to extend these results to the longitudinai & E O  in the ground states of these models. 
This extension is not quite straightforward, as one would think. 

Take a finite lattice A with N A  lattice points. The Hamiltonian of the generalized 
antiferromagnetic Heisenberg model is of the following form: 

H A  = Jijsi  * s j  (1) 
i, j e A  

where si = (se, siy, s jz )  are the spin operators localized at lattice point i and Jij 2 0 
denotes the antiferromagnetic interaction between two spins at sites i and j, respectively. 
For simplicity, we shall assume that each localized spin has the same angular momentum 
s 2 i. The lattice is called bipartite with respect to Hamiltonian (1) if it can be divided 
into two separate sublattices, A and B ,  such that Jij 0 when both lattice points i and j 
belong to the same sublattice A or B .  Define the total spin and the total spin zsomponent 
operators by S2 = ( C S ~ ) ~  and S, = Csi, .  We have 

Therefore, each eigenvector of HA is also an eigenvector of Sz and S,. 

Theorem (Lieb and Mattis): Let N A  and N E  be the numbers of lattice points in sublattice A 
and B ,  respectively. Let L SI N A  - N E [ .  Then, the ground states of the antiferromagnetic 
Heisenberg model have the total spin L(L + 1). Furthermore, apart from the trivial 2L + 1 
spin degeneracy, the ground state is non-degenerate. 

By the Lieb and Mattis theorem, if the difference INA - NBI = ~ ( N A ) ,  then the 
ground state of this generalized antiferromagnetic Heisenberg model has a spontaneous 
magnetization. However, this theorem tells us nothing about the existence of MLRO in these 
2L + 1 degenerate ground states, which we shall address in the following. For this purpose, 
we shall now recall the definitions of the spin correlation functions and MLRO. 

[ H A ,  s2]=o [ H A .  sz]=0. (2) 

For such a model, Lieb and Mattis proved the following theorem. 
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Let %(A) be the non-degenerate  ground^ state of the generalized antiferromagnetic 
Heisenberg model. Let si+ = six + isi, and si- =sir - iq,. When A is the simple cubic 
lattice, which is a special case of the bipartite lattices, we can simply define the transuerse 
2 n d  longitudinal spin correlation functions by 

g!T (S) 

where 

{*o(A) I s+ (-q)s- (Q) I wo (A)) g L ( d  E ( y o  (11) IS, (-4) SZ (d I Yo(A)) (3) 

and q is a reciprocal vector of the simple cubic lattice. If the inequality gT(q) 2 pNA 
(g~ (q )  2 ~ N A ) ,  where p > 0 is a constant independent of NA, holds for some reciprocal 
vector q, we say that qo(A) has a momentum-q transverse (longitudinal) MLRO. In 
particular, the momentum-0 MLRO is the well known ferromagnetic long-range order and 
the momentum-& (Q = (n, n, . . . , n)) MLRO represents the antiferromagnetic long-range 
order. 

For an arbitrary bipartite lattice A, theabove definitions may not be suitable. To extend 
the definitions of MLRO to the generalized antiferromagnetic Heisenberg model on such a 
lattice, we introduce the following definition. 

Defmition 1. A complex function f ( i )  defined on lattice A is called admissible if If(i)l = 1 
fix any i E A. For a specific admissible function f( i) ,  we define 

gT(f) (YO(A)~S+(~)~-(~)I~O(A)) gL(f) = (rvo(A)lS,(~)i)s,(f)lrvo(A)) ' (5) 

to be the transverse and longitudinal momentum-f spin correlation functions of %(A), 
respectively. In (5), &(j) 

Obviously, the correlation functions defined above coincide with their conventional 
counterpart on the simple cubic lattice if we choose f ( i )  = exp(iq. i). In particular, letting 

(l/m) CiEA f ( i ) s im,  ci = +, -i z .  

i f i E A  
-1 i f i E B  E ( i )  = 

we see that the momentum+ correlation functions, g T ( E )  and & ( E ) ,  are the transverse 
and longitudinal antiferromagnetic spin correlation functions of %(A). Similarly, the 
ferromagnetic correlation functions can be written as gT(v)  and & ( U )  with u(i) = 1 for any 
i E A. With definition 1, the conditions forthe existence of MLRO can be easily generalized 
to the ground states of the generalized antiferromagnetic Heisenberg model on an arbitrary 
bipartite lattice A. 

Now, we are ready to show our new results. First, we prove the following theorem. 

7Aeorem 1. Let A be a finite bipartite lattice with respect to Hamiltonian (1). Assume 
that L = slNa - NBI = O(NA). Then, a ground state Wo(M, A) (-L < M < L) of the 
gxieralized antiferromagnetic Heisenberg model on A has both transverse ferromagnetic 
md antiferromagnetic long-range orders, if M satisfies 

~~ 

L~ - M~ 2 8 ~ 2  CI) 
where S > 0 is a constant independent of N A .  

Proof. We first perform a unitary transformation on HA by letting 

six --f +)Se siy --f E(i)Siy siz + si, . 
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Formally, this unitary transformation can be achieved by operator U0 = exp (in- cisB siz). 
Under this hansfonnation, the Hamiltonian HA is mapped onto EA, which has the following 
form: 

Consequently, HA and r?, have the same spectrum. It is easy to see that [ZA, S,] = 0 
still holds. Therefore, the Hibert space of & can be divided into numerous subspaces. 
Each of them is characterized by a quantum number S, = M. For a specific subspace VM, 
we choose a basis of state vectors in the following manner. 

(10) @e = c (SI+)" (SZ+)" ' ' ' (SNA+)"" X 

where x is the state in which sir = -s and C is a positive normalization constant. Naturalh, 
we require that (m, + m2 + . . . + mNA - NA) s = M. In terms of this basis, we write HA 
in a matrix. It is not difficult to see that all the off-diagonal elements of this matrix are 
non-positive, i.e. (EA),,,,, < 0 if m # n. The diagonal elements of are either positive or 
negative but all of them satisfy lamml Q K, where K is a positive constant. Furthermore, 
this matrix is irreducible. In other words, for any given pair of indices (m, n), one can 
find a positive integer N such that (gt)m,n # 0. For such a ma&, we have the well 
known Perron-Frobenius theorem [lo]. It tells us that the lowest eigenvalue of EA in VM is 
non-degenerate and the ground state %(M, A) is a linear combination of &) with positive 
coefficients. Namely, we have 

This positivity of coefficients leads to the following important consequence. 

operator sk+sh- in G ~ ( M ,  A). Since 
Let us take two arbitrary lattice points (k, h) and consider the expectation value of 

we have 

@dM, Nbk+~h-lGo(M. A)) 2 0 c13) 
by the positivity of coefficients. 

We now perform the inverse unitary uansformation U,,' on the subspace VM. Obviously, 
VM is invariant under U;'. Also, EA is mapped onto HA and %,(M, A) onto Yo(M, A). 
However, inequality (13) now reads 

Therefore, the transverse spin correlation function of the non-degenerate ground state of HA 
in each subspace VM satisfies 

gT(c) 2 gT(') ' (15) 
It implies $at, if the ground state Y&', A) has the uansverse ferromagnetic long-range 
order, it must also support the transverse antiferromagnetic long-range order. 

On the other hand, by the Lieb and Mattis theorem, when INA - NBI # 0, the global 
ground states of HA have the total angular momentum L = SIN,, - NE!. Therefore, the 
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non-degenerate ground state Yo(M, A) in each subspace VM subject to -L < M < L is a 
global ground state of HA. When L and M satisfy condition (7) of theorem 1, we have 

gT(v) = ( vO(M,  ~)ls+(~)s-(~)l*O(M~ A)} 
1 

NA 
1 

NA 
1 

NA 

-- - WOW. NlS: + S: + SZlqo(M, A)) 

= -(Yo(M, A)IS2 - S: + SzlYo(M, A)} 

2 - [ L 2  - M 2  + M] 3 b"~ . 6 6 )  

Therefore, rYo(M, A) has the transverse ferromagnetic long-range order. Consequently, by 
inequality (15), it also has the transverse antiferromagnetic long-range order. That ends our 

Next, we shall extend theorem 1 to the longitudinal MLRO. At first glance, this extension 
seems straightforward since the Hamiltonian has the SU(2) spin symmetry. However, as 
we show in the following, this problem demands more careful thinking due to the high 
degeneracy of the global ground states of HA. To make our point more clear, let us consider 
a specific global ground state Yo(M = 0, A). Apparently, its quantum numbers S2 and S, 
satisfy the condition of theorem 1, if INa - Nsl = O(NA). Therefore, this state has both 
transverse ferromagnetic and antiferromagnetic long-range orders by theorem 1. However, a 
direct calculation reveals that it has no longitudinal ferromagnetic long-range order. Worse, 
one does not know how to prove the existence of the longitudinal antiferromagnetic long- 
range order in Yo(M = 0, A). As this  example shows, the existence of the transverse 
MLRO in a global ground state of H A  does not imply the existence of the longitudinal MLRO 
in the same state when the global ground states are highly degenerate. 

Remark I .  Indeed, the existence of the longitudinal antiferromagnetic long-range order in 
the ground state of the antiferromagnetic Heisenberg model on the simple cubic lattice has 
been proven by the authors of [6] and [7] in a completely different way. However, in their 
proofs, they relied heavily on the so-called reflection positivity, which is not enjoyed by the 
generalized antiferromagnetic Heisenberg model on an arbitrary bipartite lattice. 

proof. 0 

To begin with, we first prove the following lemma, 

kmma 1. Let f ( i )  be an admissible function defined on A. Let Y o ( M ,  A) be one of the 
2L + 1 global ground states of H A .  Then, the identity 

M 
gT(f) = 2(%(M,  ~ ) ~ & ( . f ) ~ x ( f ) ~ % ( ~ ~  A)} + (17) 

holds. 

Proof. By the definitions of S+(f) and S-(f), g T ( f )  can be written as 

gT(f) = (%(M* A)ls.r(f)&(f) ~ y ( f ) ~ y ( f ) ~ % ( ~ ~  A)) 

+&WO(M, A) I f ( k ) f ( h ) h y ~ k  - S~UM I TOW, A ) ) .  (18) 
k.  h e A  

We simplify the last sum on the right-hand side of (18) first. Take two distinct lattice 
points IC and h. Obviously, we have [sk, S h y ]  = [sky, s d  = 0. Therefore, S k y S k  - s k S h y  

is an Hermitian operator and hence its expectation value in any state is a real quantity. 
On the other hand, since HA is a real matrix, its global ground state Yo(M, A) can be 



2310 Guang-Shan Tian 

chosen as  a real state vector. Consequently, the expectation value F of s ~ $ i ,  - SK.S~,, in 
Y o ( M ,  A) must be a pure imaginary quantity because the operator is an imaginary matrix. 
This implies that F = 0. Therefore, the sum on the right-hand side of (18) is reduced to 
(i/NA)(Wo(M, A ) /  xksA f((k)f(k).)[s+,,skr - s r~ .s~~l lYo(M,  A)). Using the definition of 
the admissible functions and the spin-commutation relations, we find that this expectation 
is equal to MINA. 

Next, we apply the unitary operator U1 = exp ( ( i / 2 )  xiCA siz), which rotates each 
localized spin about the s, axis by an angle a/2, to rewrite the expectation value of 
Sy(f)Sy(f) in Y&l, A). We obtain 

( % ( M ,  ~ ) l S ~ ( . ? ) ~ y ( f ) l ' J % ( ~ ~  12)) 

Remark 2. In a previous paper [ I l l ,  we have used the same technique as in the proof of 
lemma 1 to show that a strongly correlated hard-core Boson model has no energy gap in 
the thermodynamic limit. 

After reading the proof of lemma 1, one would think that a similar identity 
(*OW, ~ ) l ~ x ( f ) & ( f ) l W ~ .  -4)) = (WM. NlS,(f)$(f)lWM A)) c m  easily be 
proven by replacing U ,  with U2 = exp ((ia/Z) Cien Siy).  Unfortunately, this is not true. 
Indeed, we do have U & ( f ) U ~ U ~ S x ( f ) C J ~  = S,(.f)S,(f). However, since UzHAUl = H A ,  
the 2L + 1 global ground states of H A ,  (\Yo(M, A)], -L 6 M 6 L,  will be transformed 
in terms of a (2L + I)-dimensional irreducible unitary representation of the SU(2) group 
under U,. In other words, U$+,(M. A)) is a very complicated linear combination of 
{Yo(M, A)). Although the coefficients of this linear combination can be determined by 
using group theory [12], one can hardly derive any useful information on the Longitudinal 
MLRO in Y o ( M ,  A) from this messy calculation. Therefore, one has to think more carefully. 

We notice that, when the external fields are absent, the 2L + 1 degenerate global 
ground states of HA have the same statistical mechanics weight. In other words, they 
are indistinguishable experimentally. Therefore, if one hies to detect MLRO in these states 
by some means (such as the neutron scattering technique), one can only obtain averaged 
data. This fact leads us to introduce *e following definition. 

Dejmtnition 2. Let f ( i )  be an admissible function defined on lattice A and let {YO(M, A)] 
be the global ground states of H A .  We define the averaged spin correlation functions by 
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With definition 2, we now prove the following. 

Theorem 2. Let A be a bipartite lattice with respect to HA. If INn - Nsl = O(NA),  then 
the global ground states of the generalized antiferromagnetic Heisenberg model on A have 
both longitudinal ferromagnetic and antiferromagnetic long-range orders. 

Proof. First, we show that 

G T W  = 2 G ~ ( f )  (22) 
holds for any admissible function f(i). In fact, by (21). we need only show that the 
following identity 

(23) 
holds for any admissible function f(i). 

we have 
Applying the unitary operator U2 = exp [(in/2) xi,, Si,] to the left-hand side of (23), 

L 

WOW. NlS~(f)&(f)l%u,(~, A)) 
M=-L 

where SM,, M~ is the well known Kronecker notation. 
On the other hand, we notice that inequality (15) holds for each of the 2L + 1 global 

ground states. Consequently, it holds for G T ( ~ ) .  Namely, we have G T ( ~ )  3 GT(v) .  
Therefore, by identity (22). we obtain 

(26) GL(E)  = ~ G T ( E )  3 ~ G T ( v )  = GL(u) .  
A direct calculation of GL(w) yields 
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Therefore, when L = s l N ~  - Nsl = ~ ( N A ) ,  we have &(E)  > GL(u) > j 3 N ~ .  It 
implies that the global ground states of the Heisenberg model on A have both longitudinal 
ferromagnetic and antiferromagnetic long-range orders. Therefore, the model represents a 
ferrimagnet. 

Our proof is accomplished. 0 

Before finishing this article, we would like to make a remark, 

Remark 3. Although we only proved lemma 1 and theorem 2 for the generalized 
antiferromagnetic Heisenberg model on a bipartite lattice, these results can easily he 
transplanted to the positive-Cl Hubbard model without further ado by using the following 
operator identities: 

s' :+ - - ct I f  c q  si- =-clLcq sir = (+)(ni t  (28) 

In summary, we have shown in this article that the global ground states of the generalized 
antiferromagnetic Heisenberg model on a bipartite lattice A with INA - NBI = O(NA) have 
both ferromagnetic and antiferromagnetic long-range orders. We have also shown that the 
antiferromagnetic long-range order is always predominant, as Nee1 proposed. Therefore, 
this model represents a ferrimagnet. 

Acknowledgments 

I would like to thank Drs S Shen and 2 Qin for useful discussions. I would also l i e  to 
thank Professor E Lieb for correspondence. This work is partially supported by the Chinese 
National Science Foundation under grant number 19274003. 

References 

[I] Nee1 L 1948 Ann Phys., Paris 3 137 
[2] Wolf W P 1961 Rep. Pros. Pkys. 24 212 
[3] Licb E and Mattis D 1962 3. Molh Phys. 3 749 
[4] Lieb E 1989 Phys. Rev. Lefr. 62 1201 
[SI Dyson F J, Lieb E and Simon B 1978 J. S@f. Pkys. 18 335 
[6] Kennedy T, Lieb E and Shastry S 1988 J. Stat. Phys. 53 1019 
[7] Kubo K and Kiahi T 1988 Phys. Rev. Lett. 61 2585 
[SI She" S Q. Qiu 2 M and Tm G S. to be published 
191 Tian G S 1992 Phys. Rev. B 45 3145 

[IO] Franklin J 1968 Matrir Themy (Englewood Cliffs, NJ: Rentice Hall) 
[ l l ]  Tian G S 1992 J. Phys. A: Mark. Gen. 25 2989 
[I21 Wyboume B G 1974 Claosical Groups fur Physicisfs (New York Wilcy) 


